2026-2-10

SWE-AGI: Benchmarking Specification-Driven Software
Construction with MoonBit in the Era of Autonomous Agents

Zhirui Zhanglf*, Hongbo Zhangl'*, Haoxiang Feil”, Zhiyuan Bao!, Yubin Chen!, Zhengyu Leil,
Ziyue Liu!, Yixuan Sun!, Mingkun Xiao?, Zihang Ye!, Yu Zhangl, Hongcheng Zhu!, Yuxiang
Wen!, Heung-Yeung Shum!*

!International Digital Economy Academy
zrustcl1l@gmail.com,hzhangcy@connect.ust.hk, feihaoxiang@idea.edu.cn
“"Equal contribution.

*Corresponding author: hshum@ust . hk

Abstract

Although large language models (LLMs) have demonstrated impressive coding capabilities,
their ability to autonomously build production-scale software from explicit specifications re-
mains an open question. In this paper, we introduce SWE-AQ], the first open-source benchmark
for evaluating end-to-end, specification-driven construction of software systems written in
MoonBit. SWE-AGI tasks require LLM-based agents to implement a range of software systems,
including parsers, interpreters, binary decoders, and SAT solvers, strictly from authoritative
standards and RFCs under a fixed API scaffold. Each task involves implementing 103-10*
lines of core logic, corresponding to weeks or months of engineering effort for an experienced
human developer. By leveraging the nascent MoonBit ecosystem, SWE-AGI minimizes data
leakage, forcing agents to rely on long-horizon architectural reasoning rather than code re-
trieval. Across frontier models, gpt-5.3-codex achieves the best overall performance (solving
19/22 tasks, 86.4%), outperforming claude-opus-4.6 (15/22, 68.2%), and kimi-2.5 exhibits the
strongest performance among open-source models. However, performance degrades sharply
with increasing task difficulty, particularly on hard, specification-intensive systems. Behavioral
analysis further reveals that as codebases scale, code reading, rather than writing, becomes
the dominant bottleneck in Al-assisted development. Overall, while specification-driven au-
tonomous software engineering is increasingly viable, substantial challenges remain before it
can reliably support production-scale development.

1. Introduction

Large language models (LLMs) (Anthropic, 2025; DeepSeek Team et al., 2025;|Gemini Team et al.,
2025; Kimi Team et al.,[2025; OpenAl, 2025; Qwen Team et al., 2025) are increasingly deployed as
software engineering (SWE) agents: they read specifications, write and refactor code, run tests,
and iterate over long trajectories. As this workflow becomes a practical interface for building
and maintaining software, evaluation must move past single-shot code completion to address
a more fundamental challenge: can an Al system autonomously carry out a production-scale
implementation from explicit requirements to generate a correct, robust, and maintainable
codebase?

Most existing benchmarks only partially capture this end-to-end capability. Function- and
problem-level tasks (Austin et al., 2021;|Chen et al., 2021) are often short-horizon and can be
solved via pattern matching or overfitting to limited tests. Repository-issue benchmarks (Deng
et al., 2025; Jimenez et al., 2023} Yang et al., 2024) more closely reflect iterative development, but
their results are frequently confounded by repository-specific conventions, hidden degrees of
freedom in tooling, and difficult-to-control training-data overlap. To measure autonomy at this
level, a benchmark should instead be specification-grounded, production-scale, and evaluated
using deterministic, human-validated tests under a standardized interface.

In this paper, we introduce SWE—AG]EL the first open-source benchmark for assessing au-
tonomous software engineering through specification-driven, from-scratch system construction
in MoonBit, a modern programming language with a nascent ecosystem. Leveraging MoonBit’s
native support for spec-first development and its integrated toolchain (MoonBit Team) 2025),
SWE-AGI tasks require LLM-based agents to implement production-grade, standards-compliant
systems in MoonBit strictly from authoritative specifications within a fixed API scaffold. Con-
cretely, MoonBit supports declaration-first workflows via the declare keyword, which allows
developers to write function signatures and type declarations first and provide implementations
later. Combined with the unified build/test/package workflow (moon), this yields a standard-
ized end-to-end engineering workflow that closely matches real-world practice. Since SWE-AGI
focuses on production-scale software systems that are largely absent from the current MoonBit
ecosystem (e.g., a CDCL SAT solver, a WASM decoder/validator, and a standards-compliant C99
parser), it explicitly prioritizes reasoning over retrieval: success depends on sustained specification
understanding, architectural decision-making, and disciplined long-horizon implementation
rather than recalling near-matching reference code.

SWE-AGI targets production-scale software engineering and consists of 22 tasks spanning
seven categories. These tasks are stratified into three difficulty tiers based on code volume and
implementation complexity, comprising 6 easy, 8 medium, and 8 hard tasks. Completing the
core logic of a SWE-AGI task requires 10°~10* lines of implementation under a fixed API scaffold,
corresponding to weeks to months of engineering effort for an experienced human developer.
To support evaluation at this scale, each task provides normative specifications (specs/), an
explicit task statement (TASK.md), and a visible public test subset for local iteration, while
benchmark scoring is performed solely on final submissions evaluated against hidden private
tests. This evaluation design shifts the challenge from isolated code generation to an end-to-end
software engineering process, requiring agents to demonstrate sustained autonomy rather than
relying on one-shot generation: interpreting complex specifications, becoming familiar with
MoonBit, architecting modular systems, and performing self-directed testing.

In our latest evaluation, gpt-5.3-codex achieves the strongest overall performance (solving
19/22 tasks, 86.4%), outperforming gpt-5.2-codex (17/22, 77.3%), claude-opus-4.6 (15/22, 68.2%),
and claude-opus-4.5 (10/22, 45.5%). Although these frontier agents successfully complete all
easy-tier tasks, performance degrades on the medium and hard tiers as task difficulty increases:
success rates for both gpt-5.3-codex and gpt-5.2-codex decline sharply on hard tasks, whereas
claude-opus-4.6 and claude-opus-4.5 begin to falter from the medium tier onward. In addition,
we evaluate several other LLMs on six easy-tier tasks, including gemini-3-flash, kimi-k2.5,
claude-sonnet-4.5, deepseek-v3.2, glm-4.7, and qwen3-max. Most of these models solve at
most 2/6 easy tasks, revealing a substantial performance gap relative to the evaluated frontier
agents even at the lowest difficulty level. Among these easy-tier baselines, kimi-k2.5 achieves
the highest overall test-suite pass rate (92.0%) while tying for the best task success rate (2/6).

Ihttps://github.com/moonbitlang/SWE-AGI

https://github.com/moonbitlang/SWE-AGI

———————— invisible boundary -------»

1. Input Space 2. Al Agent Core 3. Hidden Evaluation Sandbox 4. Final Delivery
(initial Context) (Reasoning & Execution) (Invisible to Agent / Oroole) (Evaluation Passed)

L = |======= / |
£ g B ; G a || @
TASK.md 5P°°iﬁ°3ﬁ°" 1 || Private Test Suites Ryn Metrics | Evakistion
Requi ts & 1 Functional correctness i
eqmsr;r)r;n h r.||) (\5 : : Robustness & edge cases & Analysis Passed
' L 7
::;';.':t toamiedge | 1| -
Refactor Acquisition 1.2
v SEENO Pass ALL r.
Specs/ # ﬂ Private Tests? ;
Authoritative 1 l, Flgal Prglelct
Standards (RFC Propose = Submit napshof
ng ,—aéci,‘s\ 7 ?l Task to LLM-| based Project YES e
Agent |(,n,ol Snapshot] parser/
Compliation Architecture i Metrics & Analysis] Sy
& Self-Testing Design & i main.mbt
.—a—.- Elanning README md
[1 1] LICENSE
Initial Project Pass/Fail Time-to-Solution
Structure —
Fixed API Scaffold E_E ﬁﬁ
Core LOC Behavior Stats

Figure 1 | SWE-AGI benchmark execution pipeline. From a cold-start starter repository (inputs:
TASK.md, normative specs/, a MoonBit scaffold, and public tests), an autonomous agent
iterates over design/implementation and local testing, submits the project for evaluation (via
swe-agi-submit), receives pass/fail feedback, and repeats until a verified submission passes.

We further conduct a behavioral analysis of end-to-end SWE agents and observe that code
reading, rather than code writing, emerges as the central bottleneck in Al-assisted software
development. As codebases scale, maintaining a coherent modular architecture becomes the
dominant activity. Consistent with this observation, gpt-5.2-codex allocates a larger fraction of
its actions to code understanding, while gpt-5.3-codex exhibits a more iteration-oriented profile
with higher debugging share and substantially fewer logged actions, improving time-to-solution
and overall task completion efficiency. Overall, these results suggest that autonomous software
engineering from explicit specifications is becoming increasingly feasible, yet remains far from a
solved problem at production scale.

This paper makes three contributions:

¢ We introduce SWE-AQ], the first benchmark focusing on the end-to-end construction of
complex systems from authoritative standards. It shifts the evaluation paradigm from
localized code completion to long-horizon architectural reasoning and rigorous system
implementation.

* We design a specification-grounded, retrieval-resistant evaluation setting by leveraging
MoonBit’s nascent ecosystem and spec-first primitives, ensuring that success reflects
genuine long-horizon engineering capabilities rather than recall of near-matching artifacts.

* We benchmark state-of-the-art SWE agents built on frontier LLMs on SWE-AGI and
present a comprehensive empirical and behavioral analysis, revealing strong performance
on easy-tier tasks but substantial degradation as task difficulty increases.

2. SWE-AGI Benchmark

SWE-AGI evaluates autonomous software engineering through specification-driven, from-scratch
construction of production-scale systems under a fixed MoonBit scaffold. Section2.T|defines

3

{ Starter repo: specs + task + scaffold J

'

LLM agent (design/implement
+ write tests)

{ GitHub issue + repository } ¢
| :

{ LLM agent (search/edit) } { Tmp lementftlon el }
}

: Run moon test
{ Patch (diff) } (public tests)

l Submit via swe-agi-submit
{ Run repository tests (CI) } (hidden private tests)
{ Success if tests pass } [Success if hidden private tests pass

(a) SWE-bench-style: issue resolution in existing (b) SWE-AGI style: specification-driven implemen-
repositories. tation (with agent-written tests) in a fixed scaffold.

Figure 2 | Conceptual contrast between SWE-bench (Jimenez et al.,|2023) and SWE-AGI evalua-
tion settings.

the per-task interface and agent execution loop, while Section [2.2| describes the benchmark
construction process.

2.1. Task Formulation

Figure([I|illustrates the SWE-AGI execution pipeline. Each task is framed as the construction of
a complete software system from explicit specifications (e.g., RFCs and standards) under a fixed
MoonBit API scaffold. Concretely, a task is distributed as a starter repository that provides:
(i) an explicit task statement (TASK.md) with acceptance criteria, constraints, and executable
instructions; (ii) normative references (specs/); (iii) declaration-first API scaffolding that fixes
the public interface; and (iv) a visible public test subset for fast local iteration. These components
collectively define the core loop of the Al agent: interpreting the specifications, implementing
against a fixed interface, validating locally, and iteratively submitting until the hidden private
tests pass.

Evaluation considers only final submissions against hidden private tests, allowing agents
full freedom in intermediate reasoning, testing, and implementation strategies. Private tests
reduce overfitting to the visible suite and enforce specification-grounded implementations,
while preserving an iterative, real-world-like engineering loop. During development, agents
may supplement the provided public tests with their own spec-grounded checks, perform local
validation viamoon test, and iteratively submit solutions using swe-agi-submit until the
submission passes the private test suite.

Figure [2| contrasts SWE-AGI with SWE-bench-style issue resolution in existing repositories.
Compared to common coding benchmarks in Table (I, SWE-AGI shifts the primary sources of
difficulty toward specification reading and operationalization, long-horizon system design and
multi-module implementation, and iterative debugging/refactoring under build/test feedback
in an open development settingﬂ Each task typically requires implementing 10°~10* lines of
core logic, corresponding to weeks or months of engineering effort for an experienced human
developer, and is accompanied by high-coverage, human-validated test suites that evaluate both
functional correctness on well-formed inputs and robustness to malformed inputs.

2External tools such as web search may be used, but are less helpful when near-matching implementations are
unavailable.

Table 1 | Comparison of SWE-AGI to representative coding and software engineering bench-
marks (high-level characterization; code scale and workload are rough order-of-magnitude

indicators).
Benchmark Primary goal Typical code scale Workload Difficulty focus Evaluation criteria
HumanEval
(Chen et al., Function ~ 10! LOC minutes Local correctness Unit tests
2021) synthesis
MBPP
(Austin et al.} Small programs ~10'-102 LOC minutes-hours Edge cases; basic Unit tests
2021) reasoning
APPS
(Hendrycks et al.} Programming ~10%2-10° LOC hours Problem solving; Test-based
2021) problems 1/0 behavior
LiveCodeBench
(Jain et al.,|2024) Programming ~102-10% LOC hours Contamination- Test-based;
problems resistant coding time-evolving set
(time-based) skill
RepoBench
(Liu et al.,[2023b) Repository-level ~101-102 LOC seconds-minutes Cross-file context Completion
completion retrieval accuracy
SWE-bench
(Jimenez et al.} Repo issue ~10'-10% LOC hours—days Debugging; tool Repository tests
2023) resolution use; integration (CI)
SWE-bench Pro
(Deng et al., Repo issue ~10'-10° LOC hours-days Debugging; Repository tests
2025) resolution improved (CI)
(enhanced) coverage
SWE-AGI Autonomous ~10%-10* LOC weeks-months Spec Hidden private
SWE from explicit comprehension; tests via
specifications system design submission

2.2. Benchmark Construction

SWE-AGI consists of 22 tasks spanning seven categories: (i) Template and Domain-Specific
Languages (pug, jq); (ii) Data Serialization and Configuration Formats (csv, ini, yaml, toml);
(iii) Markup and Document Formats (xml, html5); (iv) Programming Language Front-Ends
(€99, lua, ecma262, python, rérs); (v) Binary Formats and Streaming Decoders (git_object,
protobuf, zip, capnp, wasm); (vi) Networking and Protocol State Machines (uri, hpack, url);
and (vii) Automated Reasoning and SAT Solving (cdcl). Each task is framed as an end-to-end
software system with a fixed API scaffold. Tasks are assigned to three coarse difficulty tiers
(Easy/Medium/Hard), primarily based on the estimated scale of core implementation code
(excluding tests), and further informed by semantic complexity indicators such as multi-phase
parsing and validation, large state machines, and strict error-recovery requirements. Appendix[A]
provides detailed task descriptions, per-task difficulty assignments, and overall tier counts.

SWE-AGI prioritizes reasoning over retrieval and is explicitly designed to minimize superficial
success through memorization or direct code reuse. Accordingly, we focus on systems that are
largely absent from the current MoonBit ecosystem and that demand sustained engagement
with formal specifications and non-trivial engineering decisions, including interface design,
data-structure selection, and robust error handling.

Repository packaging. Following the interface defined in Section[2.1} tasks are constructed
by selecting authoritative upstream specifications (e.g., standards, RFCs, and reference docu-
ments), distilling explicit acceptance criteria—including corner cases and error semantics—into

Listing 1 | Typical directory layout for a SWE-AGI task.

tasks/<task>/
specs/ upstream specs and reference documents
TASK.md goal, scope, API, behavioral rules, test execution

*_spec.mbt
*_pub_test.mbt
*_priv_test.mbt
checkout)
moon.mod. json package manifest and dependencies
moon.pkg. json # package lockfile (pinned deps)

fixed API declarations + helper contracts
public tests (subset of full suite)
private tests (held out; only in evaluation

H H HHH

**

TASK.md, and providing a fixed API scaffold together with high-coverage test suites. The test
suites comprise a visible public subset for local iteration and a hidden private subset for verifica-
tion. To support both agent usability and researcher auditability, each task directory includes
normative references (specs/), a single task entry point (TASK . md), a minimal MoonBit package
configuration (moon.mod. json and moon.pkg. json), and scaffolded declarations (typically
in *_spec.mbt) that define and freeze the public API. Overall, tasks are packaged to minimize
hidden requirements and evaluation variance, ensuring that success depends on specification-
grounded engineering rather than repository-specific conventions. A typical directory layout is
shown in Listing

Test sets and evaluation metrics. Tests in SWE-AGI are constructed through a hybrid process.
Canonical cases are adapted from authoritative specifications and reference materials, and are
expanded with systematic edge cases—including property-based generators, LLM-generated
candidates, and fuzz-style mutations where appropriate—followed by manual triage to ensure
specification-consistent expectations. SWE-AGI reports both functional and engineering metrics
(Table[2). Functional performance is measured by task success rate and test-suite pass rate
(overall), while engineering effort and efficiency are characterized by time to solution and
implementation size (core LOC), respectively. In addition, we report behavioral statistics to
support more detailed analysis of agent behavior. Performance metrics such as runtime and
memory usage are not scored in the current release, but are reserved for future versions once
state-of-the-art models achieve consistently high task success rates.

2.3. Language Choice: MoonBit

SWE-AGI adopts MoonBit (MoonBit Team, [2025) as its implementation language to control
distributional bias during evaluation. As a relatively new programming language with a still-
maturing ecosystem, MoonBit is largely absent from existing large-scale pretraining corpora
and public code repositories. This reduces the likelihood that agents can exploit memorized
near-solutions or ecosystem-specific shortcuts, thereby shifting the evaluation signal toward
specification comprehension, algorithmic reasoning, and correct end-to-end implementation.

MoonBit’s type soundness and unified toolchain further improve the quality and timeliness
of feedback available to autonomous agents. Its emphasis on data-oriented programming,
immutability, and exhaustive pattern matching surfaces many classes of errors—such as missing
cases, violated invariants, and type mismatches—at compile time rather than at runtime. More-
over, MoonBit implementations are often more concise for a given specification, reducing overall
code volume and the surface area for latent bugs. Combined with fast Compilatiorﬂ and test

3In reported benchmarks, MoonBit can compile hundreds of packages in approximately one second, substantially

Table 2 | Recommended SWE-AGI metrics for reporting.

Metric Definition

Task success rate Fraction of tasks for which the final submission compiles successfully
and passes all hidden private tests under the specified evaluation
protocol.

Test-suite pass rate (overall) Pass rate on the full evaluation test suite executed by the evaluator
(public+private), reported as passed/total with no public/private
split.

Time to solution Wall-clock time to the first submission that passes the hidden private
tests.

Implementation size (core LOC) Number of non-test MoonBit lines of code, excluding public and
private tests as well as auxiliary tooling, used as a coarse proxy for
system scale.

Behavior stats (optional) Aggregated distribution of agent actions over the engineering loop
(e.g., specification reading, code reading and writing, debugging, test
execution, planning or navigation, and external search), computed
from tool usage logs.

declare pub(all) type CProgram

/// Parse a C99 translation unit from source text.

declare pub fn parse(code : StringView) -> CProgram raise

/// Encode the parsed program into the explicit test JSON schema
declare pub fn CProgram::to_test_json(self : CProgram) -> Json

Figure 3 | Declaration-first, spec-driven workflow in MoonBit. The declare keyword fixes
public types and function signatures (e.g., parser entry points and test-schema encoders) before
implementation.

execution via the moon toolchain, these properties enable high-frequency compile—test-refine
cycles with low feedback latency, providing earlier and more actionable signals within the agent
loop.

Finally, MoonBit’s built-in support for separating interface and implementation enables a
scaffolded evaluation setup in which public APIs, type signatures, and module boundaries
are explicitly fixed using declare (Figure[3). Agents are required to implement the specified
interfaces exactly, with deviations detected at compile time rather than implicitly tolerated at
runtime. This enforces clear boundaries, prevents interface-level circumvention, and ensures
that evaluation focuses on the correctness and robustness of the implemented logic rather than
flexibility in interface design.

3. Evaluation of Frontier Agents

We evaluate software engineering agents built on frontier models on SWE-AGI under an open
development setting in which the scored private tests are hidden from the model. Throughout,
we use model to refer to the underlying LLM, and agent to refer to the model coupled with
an execution front-end, tool access, and associated policies. Agents must translate TASK.md
plus authoritative references (specs/) into a working MoonBit implementation under a fixed
scaffold, iterate locally using public tests (10% of all tests), and submit via swe-agi-submit
until the evaluator reports that hidden private tests pass.

reducing iteration overhead compared to traditional programming languages.

3.1. Setup

We evaluate each model via an agent front-end that can edit the repository, execute local
commands, and iteratively submit solutions. We use Codex CLI with gpt-5.3-codex and gpt-5.2-
Codexﬁ Gemini CLI with gemini—3—ﬂas}ﬂ Claude Code with claude-opus-4.6, claude-opus-4.5,
claude-sonnet-4.5, qwen3-ma Im-4.7, and deepseek-v?). and Kimi CLI with kimi-k2. "ﬁ We
will release the execution scripts’|along with the model outputs and corresponding run logg'’|to
support reproducibility.

A task is considered passed if the final submitted project compiles and the evaluator reports
zero failed hidden private tests in a clean checkout; otherwise it is failed. In addition to task-level
success, we report test-suite pass rates (overall), wall-clock duration to the final submission
(hours), implementation size (core LOC, excluding tests), and token usage aggregated from
tool logs. We conduct full evaluations for gpt-5.3-codex, gpt-5.2-codex, claude-opus-4.6, and
claude-opus-4.5. In addition, we conduct a rapid assessment of agentic coding capabilities
on six easy-tier tasks for claude-sonnet-4.5, kimi-k2.5, glm-4.7, gemini-3-flash, deepseek-v3.2,
and gqwen3-max. Given the low easy-tier success rates, we limit these additional evaluations
to the easy tier and do not extend testing to higher difficulty levels. We do not enforce an
explicit budget constraint; instead, we report token consumption and wall-clock time as post hoc
efficiency metrics aggregated per run from the recorded tool logs. For Claude Code executions
(claude-opus-4.6 and claude-opus-4.5), we additionally report per-task monetary costs extracted
from the agent logs in the detailed per-task tables.

3.2. Main Results

Overall performance. Table3|summarizes SWE-AGI performance by difficulty tier and reveals
a sharp difficulty gradient. On the easy tier, all evaluated frontier agents (gpt-5.3-codex, gpt-
5.2-codex, claude-opus-4.6, claude-opus-4.5) solve 6/6 tasks with 100% test-suite pass rate,
indicating that for small parsers/decoders the end-to-end loop (spec reading, implementation
under a fixed scaffold, and iteration under test feedback) can be executed reliably. On the
medium and hard tiers, outcomes diverge: gpt-5.3-codex solves 8/8 medium and 5/8 hard tasks
(19/22 overall), gpt-5.2-codex solves 7/8 medium and 4/8 hard (17/22), claude-opus-4.6 solves
5/8 medium and 4/8 hard (15/22), while claude-opus-4.5 solves 3/8 medium and 1/8 hard
(10/22). This widening separation suggests that scaling to larger, more specification-intensive
systems is the key differentiator among frontier agents in SWE-AGI.

We also run a rapid easy-tier sweep of additional models. Even within this easier regime,
success rates are low. kimi-k2.5, glm-4.7, and gemini-3-flash solve only 2/6 tasks. deepseek-v3.2
solves 1/6, while claude-sonnet-4.5 and qwen3-max solve 0/6. These results indicate that
SWE-AGI is sensitive to robustness and generalization under specification pressure: models
that appear close on code-centric open benchmarks can separate substantially once placed in an
end-to-end setting with hidden private tests.

4For Codex CLI, we run gpt-5.3-codex in xhigh thinking mode. For gpt-5.2-codex, we adopt high thinking mode,
since xhigh incurred prohibitively long wall-clock runtimes.
5In Gemini CLI runs, we observe repeated execution failures, including three instances of “Loop detected,
stopping execution” and two instances of “[API Error: Premature close]”, which resulted in a low task pass rate. Due
to these stability issues, we omit results for gemini-3-pro from our reported evaluations.
bqwen3-max-thinking (2026-01-23)
7 deepseek-reasoner
8kimi-k2.5-thinking
‘https://github.com/moonbitlang/SWE-AGI
https://github.com/moonbitlang/SWE-AGI-Eval

https://github.com/moonbitlang/SWE-AGI
https://github.com/moonbitlang/SWE-AGI-Eval

Table 3 | Evaluation summary by difficulty tier.

Difficulty Model Tasks Passed Test-suite Pass Rate Avg. Time Avg. Core LOC
gpt-5.3-codex 6/6 100.0% (avg of 6; total 1604/1604) 0.28h 1305
gpt-5.2-codex 6/6 100.0% (avg of 6; total 1604/1604) 0.81h 1081
claude-opus-4.6 6/6 100.0% (avg of 6; total 1604/1604) 0.45h 1781
claude-opus-4.5 6/6 100.0% (avg of 6; total 1604/1604) 0.39h 1092

Fas claude-sonnet-4.5 0/6 76.1% (avg of 6; total 556/1604) 0.32h 930

y kimi-k2.5 2/6 92.0% (avg of 6; total 1338/1604) 0.9h 1163
glm-4.7 2/6 64.2% (avg of 6; total 456/1604) 0.70h 904
gemini-3-flash 2/6 49.8% (avg of 6; total 376/1604) 0.25h 558
deepseek-v3.2 1/6 16.7% (avg of 6; total 138/1604) 3.4h 1070
qwen3-max 0/6 13.9% (avg of 6; total 94/1604) 2.6h 850
gpt-5.3-codex 8/8 100.0% (avg of 8; total 5284/5284) 1.2h 2575

Medium gpt-5.2-codex 7/8 98.9% (avg of 8; total 5176/5284) 5.1h 4702
claude-opus-4.6 5/8 93.6% (avg of 8; total 5146/5284) 3.5h 4867
claude-opus-4.5 3/8 82.6% (avg of 8; total 4593 /5284) 1.3h 3304
gpt-5.3-codex 5/8 87.9% (avg of 8; total 13976/15638) 1.7h 6255

Hard gpt-5.2-codex 4/8 91.2% (avg of 8; total 13205/15638) 7.8h 9034
claude-opus-4.6 4/8 81.1% (avg of 8; total 14625/15638) 5.7h 10103
claude-opus-4.5 1/8 67.0% (avg of 8; total 10621/15638) 1.7h 6603

Failure to solve a task does not always indicate broad functional incorrectness. Across tiers,
many “failed” submissions still pass a large fraction of the evaluation test suite, suggesting
that remaining defects are often localized to rare normative requirements, subtle state-machine
corner cases, or performance bottlenecks that only surface in the hidden private tests. This is
most pronounced on the hard tier: despite solving fewer hard tasks than gpt-5.3-codex (4/8 vs.
5/8), gpt-5.2-codex achieves a higher unweighted mean hard-tier test-suite pass rate (91.2%),
reflecting near-complete coverage on several failures. At the task level, we observe multiple
near-misses, e.g., cdcl reaches 99.8% test-suite pass rate for gpt-5.2-codex and lua reaches
96.4% for claude-opus-4.5 (Tables [and [5). Practically, this means the pass/fail boundary is
often dominated by eliminating the last few spec-sensitive edge cases rather than constructing
missing core subsystems.

Agent Efficiency. Average wall-clock time and code size primarily reflect long-horizon engi-
neering difficulty and agent efficiency bottlenecks, rather than pure model capability; both are
also strongly influenced by the chosen front-end configuration and tool policies, and should
therefore be interpreted with caution. Within this framing, Table 3| highlights two consistent
gaps. First, gpt-5.3-codex is substantially more time-efficient than gpt-5.2-codex while also
improving task completion: its average runtime is about 3-5x lower across tiers (0.28h vs. 0.81h
on easy, 1.2h vs. 5.1h on medium, 1.7h vs. 7.8h on hard), and its average implementations are
smaller on medium and hard tasks (2575 vs. 4702 core LOC on medium; 6255 vs. 9034 on hard).
Second, claude-opus-4.6 improves substantially over claude-opus-4.5 on medium and hard tiers
(15/22 vs. 10/22 overall), but this gain comes with higher wall-clock time on those tiers (3.5h vs.
1.3h on medium; 5.7h vs. 1.7h on hard), consistent with additional exploration and debugging
under specification pressure.

At the same time, the runs reveal a noteworthy capability of gpt-5.2-codex: sustained long-
horizon execution even when convergence fails. For example, on ecma262 the agent runs for 42
hours without early termination while still failing the private test suite, producing an unusually
large implementation (over 30k core LOC). Accordingly, we treat core LOC as a coarse indicator

Table 4 | Per-task detailed results for gpt-5.3-codex and gpt-5.2-codex. Tokens report input/out-
put tokens as logged; for Codex CLI we report input_tokens (excluding cached_input_tokens). Cost
reports per-task dollar cost; values for Codex CLI are approximate (using API price), and this
estimate is inaccurate since it ignores the overhead introduced by reasoning tokens. Due to
the excessively long runtime of ecma262 (exceeding 42 hours), we evaluate it using a 42-hour
snapshot. As the execution did not finish within this window, input/output token statistics are
unavailable in the logs and are reported as N/A.

Task Model Task Passed Test-suite Pass Rate Duration Core LOC Tokens (in/out) Cost ($)
gpt-5.3-codex Yes 100.0% (251/251) 3.5h 2709 92.73M/319.3k ~22.69

pug gpt-5.2-codex Yes 100.0% (251/251) 24.6h 14251 647.72M/3.28M ~176.90
. gpt-5.3-codex Yes 100.0% (218/218) 1.1h 4914 45.68M/1849k ~11.41
Ja gpt-52-codex Yes 100.0% (218/218) 1.9h 6416 68.93M/267.2k ~16.67
csv gpt-5.3-codex Yes 100.0% (98/98) 0.21h 467 579M/37.1k ~1.85
gpt-5.2-codex Yes 100.0% (98/98) 0.68h 440 1297M/789k ~3.69

ini gpt-5.3-codex Yes 100.0% (98/98) 0.26h 1495 9.16M/469k ~2.57
gpt-5.2-codex Yes 100.0% (98/98) 0.77h 927 17.29M/104.7k ~4.95

aml gpt-5.3-codex Yes 100.0% (345/345) 0.90h 856 26.04M/148.3k ~47.64
y gpt-5.2-codex Yes 100.0% (345/345) 3.9h 3664 95.40M/571.6k ~26.78
toml gpt-5.3-codex Yes 100.0% (733/733) 0.88h 2149 20.80M/153.2k ~6.64
gpt-5.2-codex Yes 100.0% (733/733) 3.0h 2280 64.37M/345.0k ~17.25

<ml gpt-5.3-codex Yes 100.0% (735/735) 1.2h 4504 40.93M/165.3k ~10.57
gpt-5.2-codex Yes 100.0% (735/735) 1.9h 4946 61.76M/230.3k ~14.81

html5 gpt-5.3-codex No 86.2% (7086/8221) 3.3h 11080 67.40M/155.5k ~15.45
gpt-5.2-codex No 78.4% (6444/8221) 3.0h 6433 51.76M/209.1k ~12.66

99 gpt-5.3-codex Yes 100.0% (117/117) 0.62h 3624 22.06M/99.3k ~5.82
gpt-5.2-codex Yes 100.0% (117/117) 3.1h 5052 66.09M/332.6k ~17.68

1ua gpt-5.3-codex Yes 100.0% (137/137) 0.93h 9625 2297M/163.2k ~7.09
gpt-5.2-codex Yes 100.0% (137/137) 2.5h 5574 71.14M/307.1k ~18.40

cma262 gpt-5.3-codex No 17.5% (108/618) 0.75h 7445 17.92M/109.6k ~5.45
ecn gpt-5.2-codex No 97.7% (604/618) 42.2h 33302 N/A N/A
thon gpt-5.3-codex Yes 100.0% (653/653) 2.3h 7953 51.54M/228.4k ~13.86
Py gpt-5.2-codex Yes 100.0% (653/653) 1.8h 7675 64.68M/236.8k ~17.70
r6rs gpt-5.3-codex Yes 100.0% (1362/1362) 2.6h 3751 52.46M/225.0k ~13.72
gpt-5.2-codex No 53.4% (727/1362) 2.9h 6436 78.02M/349.6k ~20.19

it obiect gpt-5.3-codex Yes 100.0% (1000/1000) 0.44h 840 9.85M/42.4k ~2.80
EIL_OBIECE opt52-codex Yes 100.0% (1000/1000) 1.2h 1164 37.96M/1485k ~9.78
rotobuf gpt-5.3-codex Yes 100.0% (141/141) 0.19h 1590 7.090M/34.4k ~2.05
P gpt-5.2-codex Yes 100.0% (141/141) 0.50h 1670 14.26M/745k ~3.83
2i gpt-5.3-codex Yes 100.0% (1089/1089) 1.2h 1258 41.19M/177.0k ~10.83
P gpt-5.2-codex Yes 100.0% (1089/1089) 3.2h 1346 77.73M/373.3k ~20.32
capn gpt-5.3-codex Yes 100.0% (111/111) 0.53h 3114 17.83M/82.4k ~4.88
pPop gpt-5.2-codex Yes 100.0% (111/111) 1.2h 2798 25.16M/136.3k ~7.04
wasm gpt-5.3-codex Yes 100.0% (800/800) 0.76h 5085 29.51M/125.1k ~8.01
gpt-5.2-codex Yes 100.0% (800/800) 2.1h 3479 59.27M/270.4k ~15.67

uri gpt-5.3-codex Yes 100.0% (138/138) 0.25h 1645 8.98M/45.2k ~2.63
gpt-5.2-codex Yes 100.0% (138/138) 0.72h 1128 1590M/101.3k ~4.59

hpack gpt-5.3-codex Yes 100.0% (129/129) 0.33h 1793 11.71M/56.7k ~3.10
p gpt-5.2-codex Yes 100.0% (129/129) 1.0h 1157 23.90M/1439k ~6.68
1 gpt-5.3-codex Yes 100.0% (1220/1220) 0.32h 926 11.36M/48.5k ~2.88
ur gpt-5.2-codex No 91.1% (1112/1220) 1.2h 4849 31.86M/159.2k ~8.40
cdel gpt-5.3-codex No 99.6% (4295/4312) 2.2h 1650 53.07M/96.7k ~11.14
gpt-5.2-codex No 99.8% (4305/4312) 5.1h 1380 47.34M/181.8k ~11.75

10

Table 5 | Per-task detailed results for claude-opus-4.6 and claude-opus-4.5. Token and cost
values are extracted from Claude Code logs when available; N/A indicates missing token/cost
logs (e.g., due to a Claude Code crash: Maximum call stack size exceeded).

Task Model Task Passed Test-suite Pass Rate Duration Core LOC Tokens (in/out) Cost ($)
u claude-opus-4.6 No 51.4% (129/251) 1.8h 4246 44.57M/138.2k 51.69
pug claude-opus-4.5 No 35.5% (89/251) 1.1h 3422 30.96M/130.8k 22.82
. claude-opus-4.6 Yes 100.0% (218/218) 1.3h 6055 27.74M/170.3k 25.49
Ja claude-opus-4.5 Yes 100.0% (218/218) 1.3h 7812 48.46M/245.9k 34.47
csv claude-opus-4.6 Yes 100.0% (98/98) 0.70h 474 1627M/91.7k 12.44
claude-opus-4.5 Yes 100.0% (98/98) 0.49h 483 15.54M/65.7k 11.89

ini claude-opus-4.6 Yes 100.0% (98/98) 0.54h 923 8.94M/80.7k 9.05
claude-opus-4.5 Yes 100.0% (98/98) 0.28h 1070 8.28M/53.9k 6.43

1 claude-opus-4.6 No 99.7% (344 /345) 1.8h 3721 42.91M/142.0k 29.83
yam claude-opus-4.5 No 68.1% (235/345) 1.4h 3596 46.98M/207.7k 3391
toml claude-opus-4.6 No 98.0% (718/733) 13.0h 6779 N/A N/A
claude-opus-4.5 No 82.3% (603/733) 0.65h 2855 26.86M/106.9k 18.27

<ml claude-opus-4.6 Yes 100.0% (735/735) 1.6h 2839 50.70M/172.3k 35.88
claude-opus-4.5 Yes 100.0% (735/735) 2.4h 3241 58.68M/207.2k 39.42

html5 claude-opus-4.6 Yes 100.0% (8221/8221) 12.5h 10585 N/A N/A
claude-opus-4.5 No 56.5% (4648/8221) 1.0h 7583 17.39M/110.0k 14.38

c99 claude-opus-4.6 Yes 100.0% (117/117) 1.1h 4979 23.48M/100.5k 27.12
claude-opus-4.5 No 45.3% (53/117) 0.69h 4937 30.44M/96.2k 20.39

1ua claude-opus-4.6 No 97.1% (133/137) 1.5h 6688 43.37M/155.4k 398.24
claude-opus-4.5 No 96.4% (132/137) 1.2h 6782 46.14M/220.0k 34.15

ecma62 claude-opus-4.6 No 60.2% (372/618) 9.3h 13901 N/A N/A
claude-opus-4.5 No 23.1% (143/618) 0.64h 5172 34.13M/107.6k 21.78

thon claude-opus-4.6 No 0.0% (0/653) 5.2h 16991 127.99M/365.6k 13591
24 claude-opus-4.5 No 60.8% (397/653) 3.2h 10932 84.85M/252.1k 60.45
rérs claude-opus-4.6 No 91.9% (1252/1362) 7.9h 20422 21.28M/199.5k 190.32
claude-opus-4.5 No 54.0% (735/1362) 2.9h 8585 51.90M/214.4k 36.57

it obiect claude-opus-4.6 Yes 100.0% (1000/1000) 0.36h 1291 6.79M /40.5k 8.27
g1t_0bJ claude-opus-4.5 Yes 100.0% (1000/1000) 0.68h 1065 23.93M/66.9k 15.81
rotobuf claude-opus-4.6 Yes 100.0% (141/141) 0.20h 858 6.45M/28.0k 477
P u claude-opus-4.5 Yes 100.0% (141/141) 0.17h 1051 6.70M/32.4k 5.21
zi claude-opus-4.6 Yes 100.0% (1089/1089) 8.1h 10530 58.10M/227.1k 1016.53
p claude-opus-4.5 No 88.0% (958/1089) 2.1h 2006 56.33M/174.9k 37.19
capn claude-opus-4.6 Yes 100.0% (111/111) 0.38h 2605 10.63M/57.8k 9.37
Pip claude-opus-45 Yes 100.0% (111/111) 0.25h 2690 7.09M/47.6k 755
wasm claude-opus-4.6 Yes 100.0% (800/800) 0.54h 4152 16.50M/92.3k 13.66
claude-opus-4.5 Yes 100.0% (800/800) 1.7h 6101 44.49M/164.6k 3091

uri claude-opus-4.6 Yes 100.0% (138/138) 0.23h 1198 5.93M/39.6k 4.72
claude-opus-4.5 Yes 100.0% (138/138) 0.31h 1320 8.01M/56.7k 6.81

hpack claude-opus-4.6 Yes 100.0% (129/129) 0.68h 5941 9.37M/63.3k 9.37
p claude-opus-4.5 Yes 100.0% (129/129) 0.38h 1561 10.84M/75.2k 10.53
url claude-opus-4.6 Yes 100.0% (1220/1220) 1.2h 4065 29.16M/126.3k 26.97
claude-opus-4.5 No 87.0% (1062 /1220) 1.1h 2517 27.95M/945k 18.36

cdel claude-opus-4.6 Yes 100.0% (4312/4312) 6.7h 1203 60.77M/221.0k 46.19
claude-opus-4.5 No 99.6% (4295/4312) 3.0h 1020 31.56M/82.9k 20.63

11

of implementation scale rather than an optimization target: higher LOC may indicate broader
feature coverage, but may also reflect verbose implementations and refactoring churn under
heavy specification pressure.

3.3. End-to-End SWE Behavior Analysis

Beyond pass/fail outcomes, we analyze how agents allocate effort over long trajectories by
labeling logged tool actions into coarse SWE-relevant behavior categories. The taxonomy
(Table @) is heuristic: it maps observable actions (shell commands, file reads/writes, test runs,
submissions, etc.) to a small set of intent-level buckets that approximate the engineering loop
(spec understanding, code understanding/writing, debugging, hygiene, and external search).
These statistics do not capture unlogged internal reasoning, and absolute counts depend on
each agent front-end’s logging granularity; we therefore interpret them as qualitative indicators
of effort allocation rather than a normalized efficiency metric.

Table[7]summarizes the distribution of agent behaviors across difficulty tiers. As difficulty
increases, code understanding (Read) becomes the dominant activity and interaction volume
grows sharply for several agents. On hard tasks, Read accounts for 41.4% of logged actions for
gpt-5.3-codex and 64.6% for gpt-5.2-codex, with claude-opus-4.6 at 50.2% and claude-opus-4.5
at 43.5%. This shift coincides with a large increase in total actions: on hard tasks, gpt-5.2-codex
averages 1676 logged actions per task, compared to 301 for gpt-5.3-codex and 1498 for claude-
opus-4.6. Overall, once implementations reach multi-module, spec-heavy regimes, agents devote
a substantial fraction of their effort to reading, inspecting, and validating existing code rather
than generating new functionality.

These patterns suggest that long-horizon progress is constrained less by raw code generation
capacity than by the ability to maintain and reason over an evolving codebase. In this setting
the bottleneck shifts toward preserving architectural consistency, understanding prior design
decisions, and verifying interactions across modules. This aligns with findings in Thomas| (2026)
that identify code reading—rather than code writing—as a central bottleneck in Al-assisted
software development, and supports the view that comprehension and maintenance costs
dominate long-horizon engineering.

Strategy Differences Across Frontier Agents. Frontier agents exhibit systematic differences
in workflow that track within-family improvements. Relative to gpt-5.2-codex, gpt-5.3-codex
is markedly more iteration-oriented on medium and hard tasks: it spends a smaller share
on Read (41.4% vs. 64.6% on hard) while allocating more to Debug (19.8% vs. 9.2%), and it
completes runs with far fewer logged actions (301 vs. 1676 on hard). This profile is consistent
with faster convergence: fewer prolonged “maintenance” phases dominated by reading and
more decisive test-fix-retest loops, yielding substantially lower wall-clock time while improving
task completion (Table 3).

Within the Claude family, claude-opus-4.6 improves substantially over claude-opus-4.5 on
medium and hard tiers, and its behavior suggests a more deliberate workflow. Compared to
claude-opus-4.5, it allocates more effort to specification engagement and planning (e.g., on hard
tasks: 6.6% Spec and 6.7% Plan vs. 5.2% Spec and 4.4% Plan) and less to raw code writing
(13.3% vs. 24.5%), while maintaining a comparable debugging share (16.2% vs. 20.3%). This shift
toward reading and planning appears beneficial on spec-heavy systems where naive patching
can destabilize global invariants. In contrast, claude-opus-4.5 exhibits a more pronounced “read
specification—patch-rerun” pattern, with higher Write and Debug shares across tiers. While

12

Table 6 | SWE behavior categories used for log-based analysis. Categories are heuristic labels
applied to logged tool actions to summarize effort allocation.

Abbrev. Category Definition (typical signals)

Action Action count Counted logged tool actions for a task run (used as a coarse proxy for interac-
tion volume).

Spec Spec understanding Reading/searching requirements and expected behavior (e.g., TASK.md,
specs/, public tests).

Plan Planning Creating or updating task-level plans/todo items.

Read Code understanding Reading/searching implementation code or inspecting artifacts to understand
implementation; includes repository exploration and file navigation (e.g., 1s,

find, help).

Write Code writing Creating/modifying project files (implementation/config), including edits
and file operations.

Debug Debugging Running builds/tests/submissions and investigating failures; includes non-
zero-exit actions.

Hyg Hygiene Formatting or mechanical refactors explicitly recorded (e.g., moon fmt).

Ext External search Fetching/searching resources outside the repository.

Other Other Remaining actions that do not clearly fit the above categories.

Table 7 | Behavior summary by difficulty tier (percent of logged actions). Action reports average
counted actions per task. Top-3 behavior shares per row are bold.

Difficulty Model Action Spec Plan Read Write Debug Hyg Ext Other
gpt-5.3—codex 109 9.3% 0.2% 46.0% 24.8% 17.7% 0.5% 0.0% 1.5%
gpt—5.2—codex 195 6.8% 0.4% 50.1% 25.3% 12.1% 3.4% 0.0% 1.9%
claude-opus-4.6 150 11.9% 6.6% 35.1% 24.1% 17.4% 0.3% 12% 3.3%
claude-opus-4.5 145 14.9% 6.6% 25.3% 27.0% 24.0% 0.1% 0.3% 1.8%

Easy claude-sonnet-4.5 165 5.3% 5.5% 25.8% 35.9% 24.1% 0.4% 0.0% 3.1%
kimi-k2.5 138 6.7% 3.3% 20.3% 26.8% 33.7% 0.5% 0.0% 8.8%
glm-4.7 232 4.7% 3.7% 30.8% 26.3% 27.9% 0.1% 1.1% 5.3%
gemini-3-flash 79 59% 0.0% 12.9% 46.2% 33.7% 0.0% 02% 1.1%
deepseek—v3.2 608 4.2% 3.3% 36.2% 38.4% 17.1% 0.1% 0.2% 0.4%
qwen3-max 198 7.1% 4.4% 24.5% 424% 21.2% 0.0% 04% 0.1%
gpt-5.3-codex 311 7.2% 0.0% 39.6% 19.3% 19.1% 0.8% 6.0% 7.9%

Medium gpt-5.2-codex 1070 6.1% 0.0% 50.1% 21.1% 11.6% 1.9% 2.0% 7.2%
claude-opus-4.6 938 82% 5.7% 43.1% 13.8% 14.2% 0.1% 10.2% 4.6%
claude-opus-4.5 381 6.2% 3.6% 35.9% 25.8% 24.9% 02% 0.2% 3.1%
gpt-5.3—codex 301 6.0% 0.0% 41.4% 20.9% 19.8% 05% 2.0% 9.3%

Hard gpt-5.2-codex 1676 2.3% 0.0% 64.6% 20.5% 9.2% 1.0% 0.2% 2.1%
claude-opus-4.6 1498 6.6% 6.7% 50.2% 13.3% 16.2% 0.1% 3.4% 3.5%
Claude-opus-4.5 434 52% 4.4% 43.5% 24.5% 20.3% 0.1% 0.2% 1.8%

such a strategy can be effective on smaller tasks where localized fixes converge quickly, on
complex state-machine—driven systems (e.g., the HTML5 parser) frequent local patches may
accumulate inconsistencies and degrade architectural coherence, leading to instability rather
than convergence.

4. Related Work

Evaluation of LLMs. Broad evaluation frameworks such as HELM (Liang et al., [2022) and
BIG-bench (Srivastava et al.,2022) emphasize multi-scenario, multi-metric measurement, high-
lighting trade-offs beyond accuracy, such as robustness and efficiency. As LLMs increasingly
transition into autonomous agents (Schick et al., 2023; Shinn et al., 2023} Yao et al., 2022), evalua-
tion has shifted from static prompting to interactive environments that stress tool use, multi-step

13

planning, and long-horizon consistency. While domain-agnostic benchmarks like AgentBench
(Liu et al., 2023c) and Terminal-Bench (The Terminal-Bench Team| 2025) provide foundational
infrastructure, SWE-AGI focuses on the unique constraints of software engineering. It departs
from the repository-centric paradigm of SWE-bench (Jimenez et al., 2023) in two key ways:
(i) tasks are defined by rigorous, ground-truth specifications rather than existing codebase
conventions, and (ii) it employs a submission-based sandbox with private, non-public test suites,
ensuring auditable measurement even for models with unrestricted web search and retrieval
capabilities.

Software Engineering Benchmarks. The evaluation of code intelligence has evolved from
snippet-level synthesis to full-lifecycle engineering. Early benchmarks like HumanEval (Chen
et al., 2021) and MBPP (Austin et al.,[2021) focus on isolated function-level tasks, while efforts
like EvalPlus (Liu et al., 2023a)) address test-case insufficiency. To counter data contamination,
LiveCodeBench (Jain et al., 2024) introduced continuous curation. However, real-world engi-
neering requires reasoning across multiple files, as explored in RepoBench (Liu et al., 2023b) and
SWE-bench (Jimenez et al., 2023). Recently, the design space has expanded toward specialized
dimensions: PRDBench (Fu et al.,[2025) targets PRD-to-code workflows; OSS-Bench (Jiang et al.,
2025) focuses on memory-safety and optimization; and SWE-EVO (Thai et al., 2025) shifts from
initial construction to continuous software evolution. SWE-AGI complements this landscape
by targeting the end-to-end systems regime: agents must build a complete, robust system from
high-level specs under a fixed API. By decoupling the evaluation from visible unit tests and
existing repository noise, SWE-AGI provides a cleaner signal for an agent’s ability to handle the
“requirements-to-implementation” gap—a critical frontier for production-scale Al engineering.

Programming Languages and LLMs. Programming languages and ecosystems shape what
models can learn and how reliably they generalize. MultiPL-E (Cassano et al.,2022) shows that
model performance and failure modes vary across languages, reflecting differences in syntax,
standard libraries, tooling, and conventions. Beyond syntax, effective Al coding increasingly
depends on a “full-stack” tool-and-feedback loop: editor/refactoring support, build systems, test
runners, linters, static analyzers, profilers, and submission/evaluation harnesses that provide
fast and accurate signals. In many real deployments, the bottleneck is not code generation
but review, debugging, integration, and specification clarification—suggesting an advantage
for languages and platforms that shift feedback from humans to machines via strong static
guarantees, deterministic builds, and rich automated checks.

This favors statically typed languages and ecosystems that integrate a one-stop toolchain
and enforce disciplined interfaces, enabling agents to iterate with high-quality feedback and
fewer ambiguous failure modes. As the fraction of Al-generated code grows, language and
platform design may increasingly optimize for machine-assisted development: explicit spec-
ifications, stable API scaffolds, auditable build/test pipelines, and standard diagnostics that
can be consumed by agents. SWE-AGI uses MoonBit (MoonBit Team) 2025), a recently devel-
oped programming language with an integrated toolchain: the declare keyword supports
declaration-first scaffolding under a fixed API, and the unified workflow (moon) supports fast
compilation, reproducible builds, and submission-style evaluation at production scale.

14

5. Conclusion

SWE-AGI evaluates LLM-based software engineering agents on tasks defined by explicit spec-
ifications and measured by deterministic, human-validated tests. The benchmark targets
production-quality, from-scratch MoonBit implementations in the 103-10* LOC regime and
is evaluated through an iterative submission protocol: agents build and test locally, submit via
swe-agi-submit, and receive pass/fail feedback from hidden private tests. Across 22 tasks
spanning seven specification families, we observe a steep difficulty gradient: frontier agents
reliably solve all easy tasks, but performance drops sharply on medium and hard tiers. Overall,
gpt-5.3-codex solves 19/22 tasks (86.4%), gpt-5.2-codex solves 17 /22 (77.3%), claude-opus-4.6 solves
15/22 (68.2%), and claude-opus-4.5 solves 10/22 (45.5%). Many failures are near-misses with
high test-suite pass rates, suggesting that the pass/fail boundary is often dominated by a small
number of specification-sensitive edge cases and performance corner cases rather than missing
major subsystems.

Complementing these outcome metrics, our log-based behavior analysis indicates that long-
horizon progress is increasingly dominated by code understanding and maintenance rather
than raw code writing. As difficulty increases, agents spend a growing share of actions reading
and inspecting evolving implementations, and systematic differences in Read/Write/Debug
allocation track within-family performance improvements. These findings reinforce that the
central bottleneck in end-to-end agentic software engineering is sustaining coherent, correct
systems over long trajectories under build /test feedback.

In future work, we will extend SWE-AGI to encompass heterogeneous distributed sys-
tems and complex legacy code integration tasks that demand deep architectural reasoning.
We also plan to study library-centric workflows: how agents decompose specifications into
reusable components, divide subtasks across libraries, and compose existing libraries into even
larger software systems. Finally, incorporating multi-modal inputs (e.g., architectural diagrams
and visual execution traces) and exploring agent-centric toolchain optimizations alongside
non-functional imperatives like security and maintainability will be essential for achieving
deterministic, production-grade reliability.

References

Anthropic. Claude sonnet 4.5. https://www.anthropic.com/news/claude-sonnet-4-5| 2025.

J. Austin, A. Odena, M. Nye, M. Bosma, H. Michalewski, D. Dohan, E. Jiang, C. Cai, M. Terry, Q. Le, et al. Program
synthesis with large language models. arXiv preprint arXiv:2108.07732,2021. URL https://arxiv.org/abs/21
08.07732!

F. Cassano, J. Gouwar, D. Nguyen, et al. MultiPL-E: A scalable and extensible approach to benchmarking neural
code generation, 2022. URL https://arxiv.org/abs/2208.08227,

M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. de Oliveira Pinto, J. Kaplan, H. Edwards, Y. Burda, N. Joseph, G. Brockman,
A. Ray, R. Puri, G. Krueger, M. Petrov, H. Khlaaf, G. Sastry, P. Mishkin, B. Chan, S. Gray, N. Ryder, M. Pavlov,
A.Power, L. Kaiser, M. Bavarian, C. Winter, J. Hilton, R. Nakano, C. Hesse,]. Chen, E. Sigler, D. Ziegler, N. Stiennon,
J. Wu, A. Radford, D. Amodei, and I. Sutskever. Evaluating large language models trained on code. arXiv preprint
arXiv:2107.03374,2021. URL https://arxiv.org/abs/2107.03374.

DeepSeek Team et al. Deepseek-v3.2: Pushing the frontier of open large language models. arXiv preprint
arXiv:2512.02556,2025. URL https://arxiv.org/abs/2512.02556,

X. Deng, J. Da, E. Pan, et al. SWE-Bench pro: Can Al agents solve long-horizon software engineering tasks?, 2025.
URLhttps://arxiv.org/abs/2509.16941,

L. Fu, B. Zhang, H. Guan, Y. Zhu, L. Qiu, W. Liu, X. Cao, X. Cai, W. Zhang, and Y. Yu. Automatically benchmarking
Ilm code agents through agent-driven annotation and evaluation, 2025. URL https://arxiv.org/abs/2510
.24358.

Gemini Team et al. Gemini 2.5: Pushing the frontier with advanced reasoning, multimodality, long context, and next
generation agentic capabilities. arXiv preprint arXiv:2507.06261,2025. URL https://arxiv.org/abs/2507.0

15

https://www.anthropic.com/news/claude-sonnet-4-5
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2208.08227
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2512.02556
https://arxiv.org/abs/2509.16941
https://arxiv.org/abs/2510.24358
https://arxiv.org/abs/2510.24358
https://arxiv.org/abs/2507.06261
https://arxiv.org/abs/2507.06261

6261.

D. Hendrycks, S. Basart, S. Kadavath, M. Mazeika, A. Arora, E. Guo, C. Burns, S. Puranik, H. He, D. Song, and
J. Steinhardt. Measuring coding challenge competence with APPS. arXiv preprint arXiv:2105.09938, 2021. URL
https://arxiv.org/abs/2105.09938.

N. Jain, K. Han, A. Gu, W.-D. Lj, E. Yan, T. Zhang, S. Wang, A. Solar-Lezama, K. Sen, and I. Stoica. Livecodebench:
Holistic and contamination free evaluation of large language models for code. arXiv preprint arXiv:2403.07974,
2024. URL https://arxiv.org/abs/2403.07974!

Y. Jiang, R. Yap, and Z. Liang. Oss-bench: Benchmark generator for coding llms, 2025. URL https://arxiv.org/
abs/2505.12331.

C. E. Jimenez, J. Yang, A. Wettig, et al. SWE-bench: Can language models resolve real-world GitHub issues? arXiv
preprint arXiv:2310.06770, 2023. URL https://arxiv.org/abs/2310.06770|

Kimi Team et al. Kimi k2: Open agentic intelligence. arXiv preprint arXiv:2507.20534, 2025. URL https://arxiv.or
g/abs/2507.20534.

P. Liang, R. Bommasani, T. Lee, D. Tsipras, D. Soylu, M. Yasunaga, Y. Zhang, D. Narayanan, Y. Wu, A. Kumar, et al.
Holistic evaluation of language models. arXiv preprint arXiv:2211.09110, 2022. URL https://arxiv.org/abs/
2211.09110.

J. Liu, C. S. Xia, Y. Wang, and L. Zhang. Is your code generated by ChatGPT really correct? rigorous evaluation of
large language models for code generation, 2023a. URL https://arxiv.org/abs/2305.01210,

T. Liu, C. Xu, and J. McAuley. RepoBench: Benchmarking repository-level code auto-completion systems. arXiv
preprint arXiv:2306.03091, 2023b. URL https://arxiv.org/abs/2306.03091,

X. Liu, H. Yu, H. Zhang, Y. Xu, X. Lei, H. Lai, Y. Gu, H. Ding, K. Men, K. Yang, S. Zhang, X. Deng, A. Zeng, Z. Du,
C. Zhang, S. Shen, T. Zhang, Y. Su, H. Sun, M. Huang, Y. Dong, and J. Tang. Agentbench: Evaluating LLMs as
agents, 2023c. URL https://arxiv.org/abs/2308.03688,

MoonBit Team. MoonBit programming language. https://www.moonbitlang.com/} 2025.

OpenAl. OpenAl GPT-5 system card. arXiv preprint arXiv:2601.03267,2025. URL https://arxiv.org/abs/2601
.03267.

Qwen Team et al. Qwen3 technical report. arXiv preprint arXiv:2505.09388, 2025. URL https://arxiv.org/abs/
2505.09388.

T. Schick, J. Dwivedi-Yu, R. Dessi, R. Raileanu, M. Lomeli, L. Zettlemoyer, and N. Cancedda. Toolformer: Language
models can teach themselves to use tools, 2023. URL https://arxiv.org/abs/2302.04761,

N. Shinn, B. Labash, A. Gopinath, K. Narasimhan, and S. Yao. Reflexion: Language agents with verbal reinforcement
learning, 2023. URL https://arxiv.org/abs/2303.11366|

A. Srivastava, A. Rastogi, A. Rao, A. A. M. Shoeb, A. Abid, A. Fisch, A. R. Brown, A. Santoro, A. Gupta, A. Garriga-
Alonso, et al. Beyond the imitation game: Quantifying and extrapolating the capabilities of language models.
arXiv preprint arXiv:2206.04615,2022. URL https://arxiv.org/abs/2206.04615,

M. V. T. Thai, T. Le, D. N. Manh, H. P. Nhat, and N. D. Q. Bui. Swe-evo: Benchmarking coding agents in long-horizon
software evolution scenarios, 2025. URL https://arxiv.org/abs/2512.18470.

The Terminal-Bench Team. Terminal-bench: A benchmark for AI agents in terminal environments, Apr 2025. URL
https://github.com/laude-institute/terminal-bench.

R. Thomas. Breaking the spell of vibe coding. https://www.fast.ai/posts/2026-01-28-dark-flow/, 2026.

J. Yang, C. E. Jimenez, A. Wettig, et al. SWE-agent: Agent-computer interfaces enable automated software engineering,
2024. URL https://arxiv.org/abs/2405.15793|

S.Yao, J. Zhao, D. Yu, N. Du, I. Shafran, K. Narasimhan, and Y. Cao. ReAct: Synergizing reasoning and acting in
language models, 2022. URL https://arxiv.org/abs/2210.03629|

16

https://arxiv.org/abs/2507.06261
https://arxiv.org/abs/2507.06261
https://arxiv.org/abs/2507.06261
https://arxiv.org/abs/2105.09938
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2505.12331
https://arxiv.org/abs/2505.12331
https://arxiv.org/abs/2310.06770
https://arxiv.org/abs/2507.20534
https://arxiv.org/abs/2507.20534
https://arxiv.org/abs/2211.09110
https://arxiv.org/abs/2211.09110
https://arxiv.org/abs/2305.01210
https://arxiv.org/abs/2306.03091
https://arxiv.org/abs/2308.03688
https://www.moonbitlang.com/
https://arxiv.org/abs/2601.03267
https://arxiv.org/abs/2601.03267
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2302.04761
https://arxiv.org/abs/2303.11366
https://arxiv.org/abs/2206.04615
https://arxiv.org/abs/2512.18470
https://github.com/laude-institute/terminal-bench
https://www.fast.ai/posts/2026-01-28-dark-flow/
https://arxiv.org/abs/2405.15793
https://arxiv.org/abs/2210.03629

A. SWE-AGI Task Suite

Table 8 | SWE-AGI task suite (22 tasks, 7 categories). Core LOC (excluding tests and tooling) is
reported as a coarse magnitude estimate (derived from benchmarked agent implementations
and excluding public and private tests). Rows are sorted by core LOC within each category.

Task (id: title) Difficulty Core LOC Key complexity drivers

Totals: 22 tasks (Easy=6, Medium=8, Hard=8).

Template and Domain-Specific Languages

pug: Pug Template Language Medium ~5x10° Indentation semantics, mixins/blocks,
scope/inclusion, error localization

jq: JQ Query Language Interpreter Hard ~7x%10% Lexer/ parser, stream semantics (0..N outputs),

Data Serialization and Configuration Formats

built-ins, error modes

csv: CSV Parser (RFC 4180) Easy ~10% Quoting/escaping, multiline fields, line ending
edge cases, invalid patterns

ini: INI Parser Easy ~10% Section/ key parsing, escaping rules, normalization,
error handling

yaml: YAML 1.2 Parser Medium ~3x10° Indentation/block structure, anchors/ tags, scalars,
error recovery

toml: TOML 1.0 Parser Medium ~3x%x10° Dotted keys, array-of-tables, datetime/float rules,

Markup and Document Formats

UTE-8 + diagnostics

xml: XML 1.0 + Namespaces Medium ~3x%x10° Well-formedness, namespaces, entities/DTD
subset, error handling, streaming/DOM tradeoffs
html5: HTMLS5 Parser Hard ~10* Tokenization + tree builder state machines, error

Programming Language Front-Ends

recovery, entities, broad conformance

c99: C99 Parser Hard ~5x 103 Declarators/type system, precedence/ambiguity,
AST + symbols, error recovery

lua: Lua 5.4 Interpreter Hard ~5x 103 VM/bytecode, tables + metatables, closures,
coroutines, GC scope

ecma262: ECMAScript Interpreter Hard ~7x%x10° Parsing + semantics, runtime objects, corner cases

(ECMA-262 subset) exercised by suite

python: Python Interpreter (subset) Hard ~7% 103 Indentation lexing, object model, exceptions,
scoping/ closures, built-ins

rérs: R6RS Scheme Interpreter (subset) Hard ~7x%x10° Reader, macro system, evaluator/runtime, exact

Binary Formats and Streaming Decoders

printing semantics

git_object: Git Object Parser (loose Easy ~103 zlib integration, header parsing, hashing,

objects) boundary/error handling

protobuf: Protocol Buffers (streaming Easy ~10% Varint/ zigzag, length-delimited fields, chunked

codec) reads, malformed input handling

zip: ZIP File Parser Medium ~3x%x10° Central directory, Zip64, streaming reads,
CRC/validation, encoding details

capnp: Cap’'n Proto Binary Format Medium ~3x%x10° Packed encoding, pointers/segments, far pointers,
boundary safety

wasm: WASM Decoder + Validator Medium ~5x10° LEB128, section/index consistency, validation rules,

Networking and Protocol State Machines

precise error behavior

uri: URI Parser (RFC 3986) Easy ~10%® Normalization and resolution rules, encoding
constraints, error behavior

hpack: HPACK Decoder/Encoder (RFC Easy ~10° Huffman coding, dynamic table management,

7541) header field semantics

url: URL Parser (WHATWG) Medium ~3x10% Canonicalization, relative resolution,

Automated Reasoning and SAT Solving
cdcl: CDCL SAT Solver Hard

~2x103

percent-encoding, IDNA /Punycode scope

Unit propagation, clause learning,
backtracking/heuristics, data-structure efficiency

17

B. Detailed Results on SWE Behaviors

Table 9] collects the per-task behavior stats tables referenced in Section 3.3} the first part reports
gpt-5.3-codex and gpt-5.2-codex, and the continuation reports claude-opus-4.6 and claude-opus-
4.5. Percentages denote the share of logged tool actions assigned to each behavior category
(Spec, Plan, Read, Write, Debug, Hyg, Ext, Other); for readability, the top-3 behavior shares per
row are bold. In Table[J} the Action column reports the counted logged actions for that task run
and should be interpreted as a coarse proxy for interaction volume rather than a normalized
efficiency measure, since logging granularity varies across agent front-ends and runs.

18

Table 9 | Per-task behavior stats for gpt-5.3-codex and gpt-5.2-codex (percent of logged actions).
Top-3 behavior shares per row are bold.

Task Model Action Spec Plan Read Write Debug Hyg Ext Other
gpt-5.3-codex 708 5.5% 0.0% 35.6% 18.4% 15.0% 1.0% 13.6% 11.0%

pug gpt-5.2-codex 5093 5.4% 0.0% 54.0% 19.2% 10.3% 1.3% 2.7% 7.0%
. gpt-5.3-codex 435 2.8% 0.0% 32.0% 20.7% 22.5% 0.2% 0.0% 21.8%
Jq gpt-5.2-codex 522 3.3% 0.0% 45.2% 31.6% 16.7% 3.3% 0.0% 0.0%
csv gpt-5.3-codex 84 8.3% 0.0% 48.8% 22.6% 17.9% 0.0% 0.0% 2.4%
gpt-5.2-codex 143 7.7% 0.7% 56.6% 19.6% 9.1% 5.6% 0.0% 0.7%

ini gpt—5.3—codex 99 5.1% 0.0% 40.4% 29.3% 25.3% 0.0% 0.0% 0.0%
gpt-5.2-codex 176 4.0% 0.0% 42.6% 31.8% 15.9% 5.1% 0.0% 0.6%

aml gpt-5.3-codex 288 6.6% 0.0% 50.0% 19.8% 17.7% 0.3% 0.7% 4.9%
y gpt-5.2-codex 721 3.5% 0.1% 40.9% 34.0% 16.0% 3.6% 0.8% 1.1%
toml gpt-5.3-codex 237 12.2% 0.0% 33.3% 14.3% 30.4% 3.4% 55% 0.8%
gpt-5.2-codex 474 8.9% 0.0% 39.0% 28.1% 19.2% 4.0% 0.0% 0.8%

<ml gpt-5.3-codex 339 5.9% 0.0% 30.1% 32.2% 22.4% 0.0% 8.0% 1.5%
gpt-5.2-codex 483 4.1% 0.2% 42.2% 32.5% 16.4% 4.6% 0.0% 0.0%

html5 gpt-5.3-codex 329 7.9% 0.0% 30.1% 20.1% 29.5% 0.6% 7.3% 4.6%
gpt-5.2-codex 386 10.1% 0.3% 33.9% 28.2% 21.0% 0.5% 0.0% 6.0%

c99 gpt-5.3-codex 218 6.9% 0.0% 39.9% 25.2% 19.7% 0.5% 0.5% 7.3%
gpt-5.2-codex 580 10.9% 0.2% 48.6% 25.7% 11.9% 2.4% 0.0% 0.3%

1ua gpt-5.3-codex 215 4.2% 0.0% 42.3% 35.8% 16.7% 0.0% 0.0% 0.9%
gpt-5.2-codex 568 1.8% 0.2% 52.6% 34.7% 9.3% 1.1% 0.0% 0.4%

ecman62 gpt-5.3-codex 201 10.0% 0.0% 48.3% 21.9% 14.9% 0.5% 2.5% 2.0%
gpt-5.2-codex 9794 0.8% 0.0% 71.2% 17.3% 7.8% 04% 03% 2.1%

thon gpt—5.3—codex 419 5.3% 0.0% 56.1% 20.3% 12.6% 02% 29% 2.6%
Py gpt-5.2-codex 511 3.1% 0.0% 55.4% 24.9% 10.2% 1.6% 0.0% 4.9%
rérs gpt-5.3-COdEX 377 82% 0.0% 46.2% 12.5% 15.9% 1.6% 1.6% 14.1%
gpt-5.2-codex 654 10.4% 0.2% 49.1% 28.9% 10.2% 0.2% 0.0% 1.1%

it obiect gpt-5.3-codex 125 4.0% 0.0% 59.2% 24.8% 9.6% 0.8% 0.0% 1.6%
EIL_ODJECt ot 52-codex 324 4.6% 0.3% 54.3% 23.5% 12.7% 3.4% 0.0% 1.2%
rotobuf 8pPtd-3-codex 109 13.8% 0.0% 46.8% 24.8% 12.8% 1.8% 0.0% 0.0%
P gpt-52-codex 136 12.5% 0.7% 54.4% 20.6% 8.1% 22% 0.0% 1.5%
2i gpt-5.3-codex 128 5.5% 0.0% 52.3% 22.7% 12.5% 0.0% 0.0% 7.0%
p gpt—5.2—codex 693 2.5% 0.0% 42.6% 12.0% 78% 12% 1.9% 32.2%

ca gpt-5.3-codex 194 13.4% 0.0% 42.8% 19.1% 21.6% 1.0% 0.0% 2.1%
Pnp gpt-5.2-codex 265 12.5% 0.0% 55.8% 18.1% 10.9% 1.9% 0.0% 0.8%

gpt-5.3-codex 263 10.3% 0.0% 42.6% 14.8% 16.3% 0.0% 4.2% 11.8%

wasi gpt-5.2-codex 491 10.4% 0.2% 49.1% 21.0% 13.4% 2.4% 3.3% 0.2%
uri gpt-5.3-codex 95 12.6% 0.0% 33.7% 25.3% 28.4% 0.0% 0.0% 0.0%

gpt-52-codex 187 4.3% 0.5% 49.2% 28.9% 14.4% 21% 0.0% 0.5%
hpack gpt-5.3-codex 142 12.0% 0.7% 44.4% 22.5% 16.2% 0.0% 0.0% 4.2%
P gpt-5.2-codex 204 10.8% 0.5% 43.1% 26.5% 10.3% 25% 0.0% 6.4%
el gpt-53-codex 125 7.2% 0.0% 53.6% 16.0% 17.6% 0.8% 0.0% 4.8%

gpt-52-codex 338 17.8% 0.0% 48.5% 16.6% 10.4% 0.6% 0.0% 6.2%
cdel gpt-53-codex 216 4.2% 0.0% 35.2% 18.5% 28.2% 0.5% 0.0% 13.4%

gpt-5.2-codex 393 2.3% 0.3% 35.9% 31.3% 14.2% 13.5% 0.0% 2.5%
19

Table 9 | Per-task behavior stats (continued) for claude-opus-4.6 and claude-opus-4.5 (percent of
logged actions). Top-3 behavior shares per row are bold.

Task Model Action Spec Plan Read Write Debug Hyg Ext Other
u claude-opus-4.6 528 6.1% 8.3% 50.8% 16.1% 12.9% 0.2% 0.9% 4.7%
pug claude-opus-45 309 58% 32% 27.8% 35.3% 20.1% 0.0% 0.6% 7.1%
. claude-opus-4.6 459 3.7% 6.5% 52.5% 22.0% 11.5% 0.0% 2.6% 1.1%
Jd claude-opus-45 464 3.4% 3.0% 47.4% 27.4% 181% 02% 0.0% 0.4%
csv claude-opus-4.6 214 79% 5.6% 30.4% 27.6% 26.2% 0.5% 09% 0.9%

claude-opus-4.5 149 4.7% 6.7% 18.1% 32.9% 34.2% 0.0% 2.0% 1.3%
ini claude-opus-4.6 146 9.6% 6.8% 34.9% 24.0% 21.9% 0.0% 14% 1.4%

claude-opus-4.5 97 11.3% 6.2% 21.6% 30.9% 29.9% 0.0% 0.0% 0.0%

aml claude-opus-4.6 513 6.0% 4.5% 47.8% 11.5% 20.9% 0.2% 3.3% 5.8%
y claude-opus-4.5 491 3.9% 3.1% 42.4% 23.4% 24.4% 0.0% 0.8% 2.0%

claude-opus-4.6 3093 8.6% 5.3% 36.6% 14.2% 15.3% 0.2% 18.5% 1.3%

toml claude-opus-45 292 92% 3.8% 34.2% 26.7% 24.0% 1.4% 0.0% 0.7%
<ml claude-opus-4.6 542 6.5% 4.4% 39.5% 28.0% 17.3% 0.0% 4.1% 0.2%
claude-opus-4.5 534 2.6% 6.4% 32.6% 264% 31.8% 0.0% 0.0% 0.2%

html5 claude-opus-4.6 2179 5.8% 4.4% 48.5% 10.3% 12.1% 0.0% 14.0% 4.9%
claude-opus-4.5 181 16.0% 5.5% 16.6% 36.5% 23.2% 0.0% 0.0% 2.2%

c99 claude-opus-4.6 427 13.8% 4.7% 39.1% 19.9% 11.0% 0.0% 0.0% 11.5%
claude-opus-4.5 290 11.0% 5.2% 34.8% 20.7% 25.9% 0.7% 0.0% 1.7%

1ua claude-opus-4.6 425 8.0% 7.5% 38.4% 21.2% 20.5% 0.2% 0.5% 3.8%
claude-opus-4.5 465 2.8% 5.8% 51.4% 17.4% 18.9% 0.0% 0.0% 3.7%

ecma262 claude-opus-4.6 2384 6.5% 10.6% 53.4% 10.2% 16.9% 0.0% 1.3% 1.1%
claude-opus-4.5 347 6.1% 3.5% 42.1% 30.3% 13.0% 0.0% 0.0% 5.2%

thon claude-opus-4.6 2190 5.1% 6.0% 57.2% 12.1% 14.4% 0.1% 1.4% 3.7%
by claude-opus-4.5 848 32% 24% 50.1% 23.5% 18.8% 0.0% 0.9% 1.2%
r6rs claude-opus-4.6 3146 7.5% 5.8% 48.4% 14.8% 18.9% 0.0% 0.4% 4.1%
claude-opus-4.5 539 6.5% 4.6% 44.5% 22.1% 21.3% 0.0% 0.0% 0.9%

it obiect Claude-opus-4.6 206 12.6% 53% 52.4% 16.5% 10.2% 0.5% 0.0% 2.4%
E1L-0BJCCE (laude-opus-45 261 10.0% 3.4% 33.7% 24.1% 24.1% 0.0% 0.0% 4.6%
rotobuf claude-opus-4.6 97 14.4% 8.2% 27.8% 32.0% 17.5% 0.0% 0.0% 0.0%
b claude-opus-4.5 94 26.6% 16.0% 20.2% 26.6% 10.6% 0.0% 0.0% 0.0%
zip claude-opus-4.6 1990 3.6% 6.5% 57.3% 7.1% 10.2% 0.0% 4.9% 10.5%

claude-opus-4.5 595 4.9% 1.2% 44.2% 21.3% 19.7% 0.2% 0.0% 8.6%

capn claude-opus-4.6 195 16.4% 5.6% 39.0% 26.2% 11.8% 0.5% 0.0% 0.5%
pop claude-opus-45 87 21.8% 8.0% 36.8% 20.7% 11.5% 1.1% 0.0% 0.0%

claude-opus-4.6 211 22.7% 52% 29.4% 19.9% 17.1% 0.0% 0.5% 5.2%

wasm claude-opus-45 450 6.7% 2.2% 32.2% 24.0% 34.0% 0.0% 0.0% 0.9%
uri claude-opus-4.6 101 19.8% 5.9% 27.7% 24.8% 18.8% 1.0% 0.0% 2.0%

claude-opus-4.5 124 22.6% 6.5% 22.6% 25.0% 21.8% 0.8% 0.0% 0.8%
hoack claude-opus-4.6 136 11.8% 8.8% 27.2% 24.3% 8.8% 0.0% 5.1% 14.0%
P claude-opus-4.5 143 22.4% 6.3% 25.9% 25.2% 19.6% 0.0% 0.0% 0.7%
url claude-opus-4.6 432 22.7% 4.4% 22.0% 16.0% 14.6% 0.2% 12.7% 7.4%

claude-opus-4.5 290 11.0% 5.9% 29.7% 31.4% 20.0% 0.0% 0.0% 2.1%
cdel claude-opus-4.6 772 6.0% 7.5% 44.3% 15.9% 22.4% 0.1% 23% 1.4%

claude-opus-4.5 334 2.7% 8.4% 32.6% 27.2% 28.7% 0.0% 0.0% 0.3%

20

	Introduction
	SWE-AGI Benchmark
	Task Formulation
	Benchmark Construction
	Language Choice: MoonBit

	Evaluation of Frontier Agents
	Setup
	Main Results
	End-to-End SWE Behavior Analysis

	Related Work
	Conclusion
	SWE-AGI Task Suite
	Detailed Results on SWE Behaviors

